Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Brain ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38380699

RESUMO

GRIN-related disorders are rare developmental encephalopathies with variable manifestations and limited therapeutic options. Here, we present the first non-randomized, open-label, single-arm trial (NCT04646447) designed to evaluate tolerability and efficacy of L-serine in children with GRIN genetic variants leading to loss-of-function. In this phase 2A trial, patients aged 2-18 years with GRIN loss-of-function pathogenic variants received L-serine for 52-weeks. Primary endpoints included safety and efficacy by measuring changes in the Vineland Adaptive Behavior Scales, Bayley Scales, age-appropriate Wechsler Scales, Gross Motor Function-88, Sleep Disturbance Scale for Children, Pediatric Quality of Life, Child Behavior Checklist and the Caregiver-Teacher Report Form following 12 months treatment. Secondary outcomes included seizure frequency and intensity reduction and electroencephalography improvement. Assessments were performed 3 months and 1 day before starting treatment and 1-3-6-12 months after the beginning of the supplement. Twenty-four participants were enrolled (13 males/11 females, mean age 9.8 years, SD 4.8), 23 of whom completed the study. Patients had GRIN2B, GRIN1 and GRIN2A variants (12, 6 and 5 cases, respectively). Clinical phenotype showed: 91% intellectual disability (61% severe), 83% behavioral problems, 78% movement disorders and 58% with epilepsy. Based on Vineland Adaptive Behavior Composite standard score, nine children were classified as mildly impaired level group (cut-off > 55), whereas 14 were assigned to the clinically severe group. An improvement was detected in Daily Living Skills domain (P = 0,035) from the Vineland Scales within the mild group. Expressive (P = 0.005), Personal (P = 0.003), Community (P = 0.009), Interpersonal (P = 0.005) and Fine Motor (P = 0.031) subdomains improved for the whole cohort, although improvement was mostly found in the mild group. Growth Score Values cognitive subdomain on the Bayley-III showed a significant improvement in the severe group (P = 0.016), with a mean increase of 21.6 points. L-serine treatment was associated with significant improvement in the median Gross Motor Function-88 total score (P = 0.002) and the mean Pediatric Quality of Life total score (P = 0.00068) regardless of severity. L-serine normalized EEG pattern in five children, and the frequency of seizures in one clinically affected child. One patient discontinued treatment due to irritability and insomnia. The trial provides evidence that L-serine is a safe treatment for children with GRIN loss-of-function variants, having the potential to improve the adaptive, motor function and quality of life, with a better response to the treatment in mild phenotypes.

2.
Sci Rep ; 13(1): 22783, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38129426

RESUMO

Phosphomannomutase deficiency (PMM2-CDG) leads to cerebellar atrophy with ataxia, dysmetria, and intellectual deficits. Despite advances in therapy, the cognitive and adaptive profile remains unknown. Our study explores the adaptive profile of 37 PMM2-CDG patients, examining its association with parental stress and medical characteristics. Assessment tools included ICARS for the cerebellar syndrome and NPCRS for global disease severity. Behavioral and adaptive evaluation consisted of the Vineland Adaptive Behavior Scale and the Health of the Nation Outcome Scales. Psychopathological screening involved the Child Behavior Checklist and the Symptom Check-List-90-R. Parental stress was evaluated using Parental Stress Index. Results were correlated with clinical features. No significant age or sex differences were found. 'Daily living skills' were notably affected. Patients severely affected exhibited lower adaptive skill values, as did those with lipodystrophy and inverted nipples. Greater severity in motor cerebellar syndrome, behavioral disturbances and the presence of comorbidities such as hyperactivity, autistic features and moderate-to-severe intellectual disability correlated with greater parental stress. Our study found no decline in adaptive abilities. We provide tools to assess adaptive deficits in PMM2-CDG patients, emphasizing the importance of addressing communication, daily living skills, and autonomy, and their impact on parental stress in clinical monitoring and future therapies.


Assuntos
Ataxia Cerebelar , Doenças Cerebelares , Criança , Humanos , Masculino , Feminino , Estudos Transversais , Doenças Cerebelares/diagnóstico , Pais
3.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003592

RESUMO

Cerebellar atrophy (CA) is a frequent neuroimaging finding in paediatric neurology, usually associated with cerebellar ataxia. The list of genes involved in hereditary forms of CA is continuously growing and reveals its genetic complexity. We investigated ten cases with early-onset cerebellar involvement with and without ataxia by exome sequencing or by a targeted panel with 363 genes involved in ataxia or spastic paraplegia. Novel variants were investigated by in silico or experimental approaches. Seven probands carry causative variants in well-known genes associated with CA or cerebellar hypoplasia: SETX, CACNA1G, CACNA1A, CLN6, CPLANE1, and TBCD. The remaining three cases deserve special attention; they harbour variants in MAST1, PI4KA and CLK2 genes. MAST1 is responsible for an ultrarare condition characterised by global developmental delay and cognitive decline; our index case added ataxia to the list of concomitant associated symptoms. PIK4A is mainly related to hypomyelinating leukodystrophy; our proband presented with pure spastic paraplegia and normal intellectual capacity. Finally, in a patient who suffers from mild ataxia with oculomotor apraxia, the de novo novel CLK2 c.1120T>C variant was found. The protein expression of the mutated protein was reduced, which may indicate instability that would affect its kinase activity.


Assuntos
Ataxia Cerebelar , Doenças Cerebelares , Doenças Neurodegenerativas , Paraplegia Espástica Hereditária , Criança , Humanos , Heterogeneidade Genética , Mutação , Ataxia Cerebelar/genética , Ataxia Cerebelar/diagnóstico , Ataxia , Fenótipo , Paraplegia Espástica Hereditária/genética , Paraplegia , Linhagem , Atrofia , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Membrana/genética
4.
Genome Med ; 15(1): 68, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679823

RESUMO

BACKGROUND: Whole-exome sequencing (WES) and whole-genome sequencing (WGS) have become indispensable tools to solve rare Mendelian genetic conditions. Nevertheless, there is still an urgent need for sensitive, fast algorithms to maximise WES/WGS diagnostic yield in rare disease patients. Most tools devoted to this aim take advantage of patient phenotype information for prioritization of genomic data, although are often limited by incomplete gene-phenotype knowledge stored in biomedical databases and a lack of proper benchmarking on real-world patient cohorts. METHODS: We developed ClinPrior, a novel method for the analysis of WES/WGS data that ranks candidate causal variants based on the patient's standardized phenotypic features (in Human Phenotype Ontology (HPO) terms). The algorithm propagates the data through an interactome network-based prioritization approach. This algorithm was thoroughly benchmarked using a synthetic patient cohort and was subsequently tested on a heterogeneous prospective, real-world series of 135 families affected by hereditary spastic paraplegia (HSP) and/or cerebellar ataxia (CA). RESULTS: ClinPrior successfully identified causative variants achieving a final positive diagnostic yield of 70% in our real-world cohort. This includes 10 novel candidate genes not previously associated with disease, 7 of which were functionally validated within this project. We used the knowledge generated by ClinPrior to create a specific interactome for HSP/CA disorders thus enabling future diagnoses as well as the discovery of novel disease genes. CONCLUSIONS: ClinPrior is an algorithm that uses standardized phenotype information and interactome data to improve clinical genomic diagnosis. It helps in identifying atypical cases and efficiently predicts novel disease-causing genes. This leads to increasing diagnostic yield, shortening of the diagnostic Odysseys and advancing our understanding of human illnesses.


Assuntos
Algoritmos , Genômica , Humanos , Estudos Prospectivos , Bases de Dados Factuais , Estudos de Associação Genética
7.
J Med Genet ; 60(7): 644-654, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36446582

RESUMO

BACKGROUND: KBG syndrome is a highly variable neurodevelopmental disorder and clinical diagnostic criteria have changed as new patients have been reported. Both loss-of-function sequence variants and large deletions (copy number variations, CNVs) involving ANKRD11 cause KBG syndrome, but no genotype-phenotype correlation has been reported. METHODS: 67 patients with KBG syndrome were assessed using a custom phenotypical questionnaire. Manifestations present in >50% of the patients and a 'phenotypical score' were used to perform a genotype-phenotype correlation in 340 patients from our cohort and the literature. RESULTS: Neurodevelopmental delay, macrodontia, triangular face, characteristic ears, nose and eyebrows were the most prevalentf (eatures. 82.8% of the patients had at least one of seven main comorbidities: hearing loss and/or otitis media, visual problems, cryptorchidism, cardiopathy, feeding difficulties and/or seizures. Associations found included a higher phenotypical score in patients with sequence variants compared with CNVs and a higher frequency of triangular face (71.1% vs 42.5% in CNVs). Short stature was more frequent in patients with exon 9 variants (62.5% inside vs 27.8% outside exon 9), and the prevalence of intellectual disability/attention deficit hyperactivity disorder/autism spectrum disorder was lower in patients with the c.1903_1907del variant (70.4% vs 89.4% other variants). Presence of macrodontia and comorbidities were associated with larger deletion sizes and hand anomalies with smaller deletions. CONCLUSION: We present a detailed phenotypical description of KBG syndrome in the largest series reported to date of 67 patients, provide evidence of a genotype-phenotype correlation between some KBG features and specific ANKRD11 variants in 340 patients, and propose updated clinical diagnostic criteria based on our findings.


Assuntos
Anormalidades Múltiplas , Transtorno do Espectro Autista , Doenças do Desenvolvimento Ósseo , Deficiência Intelectual , Anormalidades Dentárias , Masculino , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/genética , Anormalidades Múltiplas/diagnóstico , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Dentárias/genética , Facies , Transtorno do Espectro Autista/genética , Variações do Número de Cópias de DNA , Proteínas Repressoras/genética , Deleção Cromossômica , Fenótipo , Fatores de Transcrição/genética
8.
EBioMedicine ; 98: 104855, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38251463

RESUMO

BACKGROUND: Variants in SCN8A are associated with a spectrum of epilepsies and neurodevelopmental disorders. Ataxia as a predominant symptom of SCN8A variation has not been well studied. We set out to investigate disease mechanisms and genotype-phenotype correlations of SCN8A-related ataxia. METHODS: We collected genetic and electro-clinical data of ten individuals from nine unrelated families carrying novel SCN8A variants associated with chronic progressive or episodic ataxia. Electrophysiological characterizations of these variants were performed in ND7/23 cells and cultured neurons. FINDINGS: Variants associated with chronic progressive ataxia either decreased Na+ current densities and shifted activation curves towards more depolarized potentials (p.Asn995Asp, p.Lys1498Glu and p.Trp1266Cys) or resulted in a premature stop codon (p.Trp937Ter). Three variants (p.Arg847Gln and biallelic p.Arg191Trp/p.Asp1525Tyr) were associated with episodic ataxia causing loss-of-function by decreasing Na+ current densities or a hyperpolarizing shift of the inactivation curve. Two additional episodic ataxia-associated variants caused mixed gain- and loss-of function effects in ND7/23 cells and were further examined in primary murine hippocampal neuronal cultures. Neuronal firing in excitatory neurons was increased by p.Arg1629His, but decreased by p.Glu1201Lys. Neuronal firing in inhibitory neurons was decreased for both variants. No functional effect was observed for p.Arg1913Trp. In four individuals, treatment with sodium channel blockers exacerbated symptoms. INTERPRETATION: We identified episodic or chronic ataxia as predominant phenotypes caused by variants in SCN8A. Genotype-phenotype correlations revealed a more pronounced loss-of-function effect for variants causing chronic ataxia. Sodium channel blockers should be avoided under these conditions. FUNDING: BMBF, DFG, the Italian Ministry of Health, University of Tuebingen.


Assuntos
Ataxia , Neurônios , Humanos , Animais , Camundongos , Ataxia/diagnóstico , Ataxia/genética , Códon sem Sentido , Bloqueadores dos Canais de Sódio , Canal de Sódio Disparado por Voltagem NAV1.6/genética
9.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233161

RESUMO

Our clinical series comprises 124 patients with movement disorders (MDs) and/or ataxia with cerebellar atrophy (CA), many of them showing signs of neurodegeneration with brain iron accumulation (NBIA). Ten NBIA genes are accepted, although isolated cases compatible with abnormal brain iron deposits are known. The patients were evaluated using standardised clinical assessments of ataxia and MDs. First, NBIA genes were analysed by Sanger sequencing and 59 patients achieved a diagnosis, including the detection of the founder mutation PANK2 p.T528M in Romani people. Then, we used a custom panel MovDisord and/or exome sequencing; 29 cases were solved with a great genetic heterogeneity (34 different mutations in 23 genes). Three patients presented brain iron deposits with Fe-sensitive MRI sequences and mutations in FBXO7, GLB1, and KIF1A, suggesting an NBIA-like phenotype. Eleven patients showed very early-onset ataxia and CA with cortical hyperintensities caused by mutations in ITPR1, KIF1A, SPTBN2, PLA2G6, PMPCA, and PRDX3. The novel variants were investigated by structural modelling, luciferase analysis, transcript/minigenes studies, or immunofluorescence assays. Our findings expand the phenotypes and the genetics of MDs and ataxias with early-onset CA and cortical hyperintensities and highlight that the abnormal brain iron accumulation or early cerebellar gliosis may resembling an NBIA phenotype.


Assuntos
Transtornos dos Movimentos , Doenças Neurodegenerativas , Ataxia/genética , Encéfalo , Humanos , Ferro , Cinesinas , Mutação , Doenças Neurodegenerativas/genética , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética
10.
Hum Mol Genet ; 31(22): 3897-3913, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-35766882

RESUMO

Peroxiredoxin 3 (PRDX3) encodes a mitochondrial antioxidant protein, which is essential for the control of reactive oxygen species homeostasis. So far, PRDX3 mutations are involved in mild-to-moderate progressive juvenile onset cerebellar ataxia. We aimed to unravel the molecular bases underlying the disease in an infant suffering from cerebellar ataxia that started at 19 months old and presented severe cerebellar atrophy and peripheral neuropathy early in the course of disease. By whole exome sequencing, we identified a novel homozygous mutation, PRDX3 p.D163E, which impaired the mitochondrial ROS defense system. In mouse primary cortical neurons, the exogenous expression of PRDX3 p.D163E was reduced and triggered alterations in neurite morphology and in mitochondria. Mitochondrial computational parameters showed that p.D163E led to serious mitochondrial alterations. In transfected HeLa cells expressing the mutation, mitochondria accumulation was detected by correlative light electron microscopy. Mitochondrial morphology showed severe changes, including extremely damaged outer and inner membranes with a notable cristae disorganization. Moreover, spherical structures compatible with lipid droplets were identified, which can be associated with a generalized response to stress and can be involved in the removal of unfolded proteins. In the patient's fibroblasts, PRDX3 expression was nearly absent. The biochemical analysis suggested that the mutation p.D163E would result in an unstable structure tending to form aggregates that trigger unfolded protein responses via mitochondria and endoplasmic reticulum. Altogether, our findings broaden the clinical spectrum of the recently described PRDX3-associated neurodegeneration and provide new insight into the pathological mechanisms underlying this new form of cerebellar ataxia.


Assuntos
Ataxia Cerebelar , Degenerações Espinocerebelares , Humanos , Animais , Camundongos , Peroxirredoxina III/genética , Peroxirredoxina III/metabolismo , Células HeLa , Ataxia/genética , Mutação , Proteínas Mitocondriais/genética
11.
Hum Mol Genet ; 31(22): 3789-3806, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-35708486

RESUMO

Here, we describe the results of a genome-wide study conducted in 11 939 coronavirus disease 2019 (COVID-19) positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (P < 5 × 10-8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (P = 1.3 × 10-22 and P = 8.1 × 10-12, respectively), and for variants in 9q21.32 near TLE1 only among females (P = 4.4 × 10-8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (P = 2.7 × 10-8) and ARHGAP33 (P = 1.3 × 10-8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative (HGI) confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, P = 4.1 × 10-8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (<60 or ≥60 years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided.


Assuntos
COVID-19 , Estudo de Associação Genômica Ampla , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , COVID-19/genética , Caracteres Sexuais , Loci Gênicos , Predisposição Genética para Doença
12.
EClinicalMedicine ; 50: 101515, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35770252

RESUMO

Background: Most children and adolescents infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain asymptomatic or develop a mild coronavirus disease 2019 (COVID-19) that usually does not require medical intervention. However, a small proportion of pediatric patients develop a severe clinical condition, multisystem inflammatory syndrome in children (MIS-C). The involvement of epigenetics in the control of the immune response and viral activity prompted us to carry out an epigenomic study to uncover target loci regulated by DNA methylation that could be altered upon the appearance of MIS-C. Methods: Peripheral blood samples were recruited from 43 confirmed MIS-C patients. 69 non-COVID-19 pediatric samples and 15 COVID-19 pediatric samples without MIS-C were used as controls. The cases in the two groups were mixed and divided into discovery (MIS-C = 29 and non-MIS-C = 56) and validation (MIS-C = 14 and non-MIS-C = 28) cohorts, and balanced for age, gender and ethnic background. We interrogated 850,000 CpG sites of the human genome for DNA methylation variants. Findings: The DNA methylation content of 33 CpG loci was linked with the presence of MIS-C. Of these sites, 18 (54.5%) were located in described genes. The top candidate gene was the immune T-cell mediator ZEB2; and others highly ranked candidates included the regulator of natural killer cell functional competence SH2D1B; VWA8, which contains a domain of the Von Willebrand factor A involved in the pediatric hemostasis disease; and human leukocyte antigen complex member HLA-DRB1; in addition to pro-inflammatory genes such as CUL2 and AIM2. The identified loci were used to construct a DNA methylation profile (EPIMISC) that was associated with MIS-C in both cohorts. The EPIMISC signature was also overrepresented in Kawasaki disease patients, a childhood pathology with a possible viral trigger, that shares many of the clinical features of MIS-C. Interpretation: We have characterized DNA methylation loci that are associated with MIS-C diagnosis. The identified genes are likely contributors to the characteristic exaggerated host inflammatory response observed in these patients. The described epigenetic signature could also provide new targets for more specific therapies for the disorder. Funding: Unstoppable campaign of Josep Carreras Leukaemia Foundation, Fundació La Marató de TV3, Cellex Foundation and CERCA Programme/Generalitat de Catalunya.

13.
Brain ; 145(10): 3711-3722, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35325049

RESUMO

Sulphated proteoglycans are essential in skeletal and brain development. Recently, pathogenic variants in genes encoding proteins involved in the proteoglycan biosynthesis have been identified in a range of chondrodysplasia associated with intellectual disability. Nevertheless, several patients remain with unidentified molecular basis. This study aimed to contribute to the deciphering of new molecular bases in patients with chondrodysplasia and neurodevelopmental disease. Exome sequencing was performed to identify pathogenic variants in patients presenting with chondrodysplasia and intellectual disability. The pathogenic effects of the potentially causative variants were analysed by functional studies. We identified homozygous variants (c.1218_1220del and c.1224_1225del) in SLC35B2 in two patients with pre- and postnatal growth retardation, scoliosis, severe motor and intellectual disabilities and hypomyelinating leukodystrophy. By functional analyses, we showed that the variants affect SLC35B2 mRNA expression and protein subcellular localization leading to a functional impairment of the protein. Consistent with those results, we detected proteoglycan sulphation impairment in SLC35B2 patient fibroblasts and serum. Our data support that SLC35B2 functional impairment causes a novel syndromic chondrodysplasia with hypomyelinating leukodystrophy, most likely through a proteoglycan sulphation defect. This is the first time that SLC35B2 variants are associated with bone and brain development in human.


Assuntos
Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Homozigoto , Sequenciamento do Exoma , Proteoglicanas/genética , RNA Mensageiro , Transportadores de Sulfato/genética
14.
Neurology ; 98(9): e912-e923, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35012964

RESUMO

BACKGROUND AND OBJECTIVES: Genetic white matter disorders (GWMD) are of heterogeneous origin, with >100 causal genes identified to date. Classic targeted approaches achieve a molecular diagnosis in only half of all patients. We aimed to determine the clinical utility of singleton whole-exome sequencing and whole-genome sequencing (sWES-WGS) interpreted with a phenotype- and interactome-driven prioritization algorithm to diagnose GWMD while identifying novel phenotypes and candidate genes. METHODS: A case series of patients of all ages with undiagnosed GWMD despite extensive standard-of-care paraclinical studies were recruited between April 2017 and December 2019 in a collaborative study at the Bellvitge Biomedical Research Institute (IDIBELL) and neurology units of tertiary Spanish hospitals. We ran sWES and WGS and applied our interactome-prioritization algorithm based on the network expansion of a seed group of GWMD-related genes derived from the Human Phenotype Ontology terms of each patient. RESULTS: We evaluated 126 patients (101 children and 25 adults) with ages ranging from 1 month to 74 years. We obtained a first molecular diagnosis by singleton WES in 59% of cases, which increased to 68% after annual reanalysis, and reached 72% after WGS was performed in 16 of the remaining negative cases. We identified variants in 57 different genes among 91 diagnosed cases, with the most frequent being RNASEH2B, EIF2B5, POLR3A, and PLP1, and a dual diagnosis underlying complex phenotypes in 6 families, underscoring the importance of genomic analysis to solve these cases. We discovered 9 candidate genes causing novel diseases and propose additional putative novel candidate genes for yet-to-be discovered GWMD. DISCUSSION: Our strategy enables a high diagnostic yield and is a good alternative to trio WES/WGS for GWMD. It shortens the time to diagnosis compared to the classical targeted approach, thus optimizing appropriate management. Furthermore, the interactome-driven prioritization pipeline enables the discovery of novel disease-causing genes and phenotypes, and predicts novel putative candidate genes, shedding light on etiopathogenic mechanisms that are pivotal for myelin generation and maintenance.


Assuntos
Doenças do Sistema Nervoso Central , Exoma , Substância Branca , Sequência de Bases , Doenças do Sistema Nervoso Central/genética , Exoma/genética , Humanos , Substância Branca/patologia , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
15.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801522

RESUMO

(1) Background: A non-progressive congenital ataxia (NPCA) phenotype caused by ß-III spectrin (SPTBN2) mutations has emerged, mimicking spinocerebellar ataxia, autosomal recessive type 14 (SCAR14). The pattern of inheritance, however, resembles that of autosomal dominant classical spinocerebellar ataxia type 5 (SCA5). (2) Methods: In-depth phenotyping of two boys studied by a customized gene panel. Candidate variants were sought by structural modeling and protein expression. An extensive review of the literature was conducted in order to better characterize the SPTBN2-associated NPCA. (3) Results: Patients exhibited an NPCA with hypotonia, developmental delay, cerebellar syndrome, and cognitive deficits. Both probands presented with progressive global cerebellar volume loss in consecutive cerebral magnetic resonance imaging studies, characterized by decreasing midsagittal vermis relative diameter measurements. Cortical hyperintensities were observed on fluid-attenuated inversion recovery (FLAIR) images, suggesting a neurodegenerative process. Each patient carried a novel de novo SPTBN2 substitution: c.193A > G (p.K65E) or c.764A > G (p.D255G). Modeling and protein expression revealed that both mutations might be deleterious. (4) Conclusions: The reported findings contribute to a better understanding of the SPTBN2-associated phenotype. The mutations may preclude proper structural organization of the actin spectrin-based membrane skeleton, which, in turn, is responsible for the underlying disease mechanism.


Assuntos
Ataxia Cerebelar/patologia , Mutação , Doenças Neurodegenerativas/patologia , Espectrina/genética , Idade de Início , Sequência de Aminoácidos , Ataxia Cerebelar/complicações , Ataxia Cerebelar/congênito , Ataxia Cerebelar/genética , Criança , Estudos de Coortes , Estudos de Associação Genética , Humanos , Masculino , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/genética , Neuroimagem , Fenótipo , Conformação Proteica , Homologia de Sequência , Espectrina/química , Espectrina/metabolismo , Síndrome
16.
EBioMedicine ; 66: 103339, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33867313

RESUMO

BACKGROUND: Patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the coronavirus disease 2019 (COVID-19), exhibit a wide spectrum of disease behaviour. Since DNA methylation has been implicated in the regulation of viral infections and the immune system, we performed an epigenome-wide association study (EWAS) to identify candidate loci regulated by this epigenetic mark that could be involved in the onset of COVID-19 in patients without comorbidities. METHODS: Peripheral blood samples were obtained from 407 confirmed COVID-19 patients ≤ 61 years of age and without comorbidities, 194 (47.7%) of whom had mild symptomatology that did not involve hospitalization and 213 (52.3%) had a severe clinical course that required respiratory support. The set of cases was divided into discovery (n = 207) and validation (n = 200) cohorts, balanced for age and sex of individuals. We analysed the DNA methylation status of 850,000 CpG sites in these patients. FINDINGS: The DNA methylation status of 44 CpG sites was associated with the clinical severity of COVID-19. Of these loci, 23 (52.3%) were located in 20 annotated coding genes. These genes, such as the inflammasome component Absent in Melanoma 2 (AIM2) and the Major Histocompatibility Complex, class I C (HLA-C) candidates, were mainly involved in the response of interferon to viral infection. We used the EWAS-identified sites to establish a DNA methylation signature (EPICOVID) that is associated with the severity of the disease. INTERPRETATION: We identified DNA methylation sites as epigenetic susceptibility loci for respiratory failure in COVID-19 patients. These candidate biomarkers, combined with other clinical, cellular and genetic factors, could be useful in the clinical stratification and management of patients infected with the SARS-CoV-2. FUNDING: The Unstoppable campaign of the Josep Carreras Leukaemia Foundation, the Cellex Foundation and the CERCA Programme/Generalitat de Catalunya.


Assuntos
COVID-19/genética , Metilação de DNA , Epigenoma , Insuficiência Respiratória/virologia , Adulto , COVID-19/etiologia , Estudos de Coortes , Ilhas de CpG , Feminino , Estudo de Associação Genômica Ampla , Humanos , Interferons/genética , Interferons/metabolismo , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Insuficiência Respiratória/genética , Índice de Gravidade de Doença , Espanha , Adulto Jovem
17.
Neuropediatrics ; 52(5): 403-405, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33511597

RESUMO

BACKGROUND: Multiple lower cranial nerve palsies have been attributed to occipital condyle fractures in older children and adults, but no clinical details of other possible mechanisms have been described in infants. CASE REPORT: A 33-month-old boy suffered blunt head trauma. A bilateral skull base fracture was diagnosed, with favorable outcome during the first days after trauma. On the sixth day, the patient began to refuse drinking and developed hoarseness. Physical examination and additional investigations revealed paralysis of left VII, IX, X, and XI cranial nerves. A follow-up computed tomography (CT) scan disclosed a left petrous bone fracture involving the lateral margin of the jugular foramen, and a cranial magnetic resonance imaging (MRI) study showed a left cerebellar tonsil contusion. He improved after methylprednisolone was started. Three months later, he was asymptomatic, although mild weakness and atrophy of the left sternocleidomastoid and trapezius muscles remained 1 year later. DISCUSSION: A posttraumatic "jugular foramen syndrome" is rare in children, but it has been reported shortly after occipital condyle fracture, affecting mainly IX, X, and XI cranial nerves. In this toddler, delayed symptoms appeared with unilateral involvement. While an occipital fracture was ruled out, neuroimaging findings suggest the hypothesis of a focal contusion as a consequence of a coup-contrecoup injury. CONCLUSION: This exceptional case highlights the importance of gathering physical examination, anatomical correlation, and neuroimaging to yield a diagnosis.


Assuntos
Doenças dos Nervos Cranianos , Forâmen Jugular , Adulto , Criança , Pré-Escolar , Humanos , Forâmen Jugular/anormalidades , Masculino , Osso Occipital/diagnóstico por imagem , Osso Occipital/patologia , Tomografia Computadorizada por Raios X
18.
J Neurol ; 268(9): 3081-3085, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33387010

RESUMO

OBJECTIVE: Children with neuromuscular disorders have been assumed to be a particularly vulnerable population since the beginning of COVID-19. Although this is a plausible hypothesis, there is no evidence that complications or mortality rates in neuromuscular patients are higher than in the general population. The aim of this study is to describe the clinical characteristics and outcome of COVID-19 in children with neuromuscular disorders. METHODS: A registry of children with neuromuscular conditions and laboratory-confirmed-SARS-CoV-2 infection was set up by the Neuromuscular Working Group of the Spanish Pediatric Neurology Society (SENEP). Data to be collected were focused on the characteristics and baseline status of the neuromuscular condition and the course of COVID-19. RESULTS: Severe complications were not observed in our series of 29 children with neuromuscular disorders infected by SARS-CoV-2. Eighty-nine percent of patients were clinically categorized as asymptomatic or mild cases and 10% as moderate cases. Patients with a relatively more severe course of COVID-19 had SMA type 1 and were between 1 and 3 years. CONCLUSIONS: The course of COVID-19 in children with neuromuscular disorders may not be as severe as expected. The protective role of young age seems to outweigh the risk factors that are common in neuromuscular patients, such as a decreased respiratory capacity or a weak cough. Further studies are needed to know if this finding can be generalized to children with other chronic diseases.


Assuntos
COVID-19 , Doenças Neuromusculares , Criança , Humanos , Doenças Neuromusculares/complicações , Doenças Neuromusculares/epidemiologia , Fatores de Risco , SARS-CoV-2
19.
J Inherit Metab Dis ; 44(2): 401-414, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32677093

RESUMO

The neurological phenotype of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) and short-chain enoyl-CoA hydratase (SCEH) defects is expanding and natural history studies are necessary to improve clinical management. From 42 patients with Leigh syndrome studied by massive parallel sequencing, we identified five patients with SCEH and HIBCH deficiency. Fourteen additional patients were recruited through collaborations with other centres. In total, we analysed the neurological features and mutation spectrum in 19 new SCEH/HIBCH patients. For natural history studies and phenotype to genotype associations we also included 70 previously reported patients. The 19 newly identified cases presented with Leigh syndrome (SCEH, n = 11; HIBCH, n = 6) and paroxysmal dystonia (SCEH, n = 2). Basal ganglia lesions (18 patients) were associated with small cysts in the putamen/pallidum in half of the cases, a characteristic hallmark for diagnosis. Eighteen pathogenic variants were identified, 11 were novel. Among all 89 cases, we observed a longer survival in HIBCH compared to SCEH patients, and in HIBCH patients carrying homozygous mutations on the protein surface compared to those with variants inside/near the catalytic region. The SCEH p.(Ala173Val) change was associated with a milder form of paroxysmal dystonia triggered by increased energy demands. In a child harbouring SCEH p.(Ala173Val) and the novel p.(Leu123Phe) change, an 83.6% reduction of the protein was observed in fibroblasts. The SCEH and HIBCH defects in the catabolic valine pathway were a frequent cause of Leigh syndrome in our cohort. We identified phenotype and genotype associations that may help predict outcome and improve clinical management.


Assuntos
Anormalidades Múltiplas/genética , Erros Inatos do Metabolismo dos Aminoácidos/genética , Distonia/genética , Enoil-CoA Hidratase/genética , Doença de Leigh/genética , Tioléster Hidrolases/deficiência , Valina/metabolismo , Encéfalo/diagnóstico por imagem , Pré-Escolar , Distonia/diagnóstico , Enoil-CoA Hidratase/deficiência , Feminino , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Internacionalidade , Doença de Leigh/diagnóstico , Doença de Leigh/metabolismo , Imageamento por Ressonância Magnética , Masculino , Redes e Vias Metabólicas/genética , Mutação , Fenótipo , Taxa de Sobrevida , Tioléster Hidrolases/genética
20.
Parkinsonism Relat Disord ; 80: 165-174, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33022436

RESUMO

OBJECTIVE: To perform phenotype and genotype characterization in myoclonus-dystonia patients and to validate clinical rating tools. METHOD: Two movement disorders experts rated patients with the Burke-Fahn-Marsden and Unified-Myoclonus rating scales using a video-recording protocol. Clinimetric analysis was performed. SGCE mutations were screened by Sanger sequencing and multiplex ligation-dependent probe amplification. RESULTS: 48 patients were included and 43/48 rated. Mean age at assessment was 12.9±10.5 years (range 3-51) and 88% were ≤18 years of age. Myoclonus was a universal sign with a rostro-caudal severity-gradient. Myoclonus increased in severity and spread to lower limbs during action tests. Stimulus-evoked myoclonus was observed in 86.8% cases. Dystonia was common but mild. It had a focal distribution and was action-induced, causing writer's cramp (69%) and gait dystonia (34%). The severity of both myoclonus and dystonia had a strong impact on hand writing and walking difficulties. The Unified Myoclonus Rating scale showed the best clinimetric properties for the questionnaire, action myoclonus and functional subscales, and exceeded the Burke-Fahn-Marsden scale in its utility in assessing functional impairment in MDS patients. Twenty-one different SGCE mutations were identified in 45/48 patients, eleven being novel (most prevalent p. Val187*, founder mutation in Canary Islands). CONCLUSION: This study quantifies the severity of the motor phenotype in SGCE-myoclonus dystonia syndrome, with a special focus on children, and identifies disabilities in gross and fine motor tasks that are essential for childhood development. Our results contribute to the knowledge of SGCE-related MDS in the early stage of evolution, where disease-modifying therapies could be initiated in order to prevent long-term social and physical burdens.


Assuntos
Distúrbios Distônicos/genética , Distúrbios Distônicos/fisiopatologia , Destreza Motora/fisiologia , Sarcoglicanas/genética , Adolescente , Adulto , Criança , Desenvolvimento Infantil/fisiologia , Pré-Escolar , Distúrbios Distônicos/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Índice de Gravidade de Doença , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...